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ABSTRACT 

As part of a general study of Knudsen flow in porous media. three special cases have 
been analyzed using Monte Carlo simulation. Steady flow through cylindrical tubes 
has been studied. the results indicating the range of validit:; of the analytic short and 
long tube formulas. Transient how in tubes with adsorption on the walls has been 
analyzed. The results indicate that the diffusion equation adequately describes ihe 
Row, provided (L/r,) > 50. The response of short tubes, (L/V,,) m 1. to a point source 
pulse illustrates special characteristics which might be useful for an experimental 
determination of wall adsorption times. Lastly, the Row in a converging-diverging 
tube has been studied, and the results indicate that significant reductions in the f!o;v 
rate can occur for channels having the same average diameter but varying degrees of 
curvature in the direction of flow. 

When the mean free path. or the average distance traveled by molecules between 
collisions, becomes large compared to the characteristic dimension of a system, tbe 
molecule-molecule collisions become unimportant, and the molecule-wall collisions 
dominate the transport processes. This situation can occur when the density is 
very low, as in high altitude flight or in cryogenic pumping, or when the characteris- 
tic dimension of the system is very small, as in a catalyst pellet. In the Knudsen, or 
free-molecule flow regime the flight path of a molecule is a straight line,’ and one 

* Presented at the Cleveland AIChE Meeting, May 1969. 
i Gravitational, electrostatic, and electromagnetic effects are considered negligible here, 
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need only know the wall collision characteristics in order to completely determine 
the molecular motion for any given system. The molecule-wall interaction is 
obviously enormously complex; however, the extreme conditions in gas-solid 
collision phenomena are conceptually quite simple, i.e., elastic scattering at one 
extreme and diffuse scattering at the other. In the former case the scattering angle 
(i.e., the angle between the normal to the surface and the direction of the scattered 
molecule) is equal to the angle of incidence, while in the latter case the scattering 
angle is distributed as the cosine. On clean, crystal planes experiments indicate that 
neither of these simplifications nor a simple combination of them is justified 
([I], pages 346-540); however, for contaminated surfaces or microscopically rough 
surfaces diffuse scattering is a satisfactory description of the gas-solid collision 
process. Under these circumstances the molecular motion is completely and simply 
determined, at least in a statistical sense. 

Free molecular flows occurring under these conditions can be analyzed in terms 
of classical kinetic theory ([2], ([3], page 292)) leading to integral equations 
for wall and exit plane flux distributions [4, 5, 61. These integral equations are 
identical to those found in the treatment of radiant energy transfer [7], and in 
general they are not amenable to analytic solution. Since numerical solution 
of the integral equations is the usual route to a satisfactory answer, the use of 
direct Monte Carlo simulation of the molecular process offers considerable appeal. 
It should be noted that we can consider ourselves to be dealing with a two dimen- 
sional integral when asking for only the transit probability. If the wall flux 
distribution can be specified a priori (as it can for the “long tube”) the integration 
is straightforward. In general the wall flux must be determined from an integral 
equation for which there is no explicit solution, and iterative techniques must be 
used. Thus the solution is more complex than solving a simple two dimensional 
integral. Furthermore, the complexity of the problem is increased if: (a) the geome- 
try is irregular, (b) energy transfer is considered during wall collisions, and (c) 
finite wall adsorption times are incorporated into the analysis. In general Monte 
Carlo methods are superior for analyzing integral problems of greater than three 
dimensions, and while the iterated integral solution cannot be directly interpreted 
as a higher order integral, it is clear that at some point in the analysis of an increa- 
singly complicated system Monte Carlo becomes the method of choice. For simpler 
systems it is not preferred, but it must be done if only to check the simulation 
against the deterministic integral solution. 

This type of approach appears to have first been used by Davis [8] for the calcula- 
tion of free-molecule flow rates in a number of different piping systems, one of 
which was the straight cylindrical tube analyzed in this work. Other investigators 
[9, lo] have used this method for the analysis of flow in geometrically complex 
systems, and Ballance [l l] extended the technique to include molecule-molecule 
collisions and thus obtain values for the flow rate in the slip-flow region. 
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Monte Carlo simulation has a distinct advantage over the numericai solu:ion 
of the integral equations in that the problem is conceptually easy to formula!e, 
especiall>l if one is concerned with modifyiug the wall-collisicm process to inc!ud:: 
adsorption, nondiffuse scattering, distributed adsorption lifetimes, chemicai 
reaction, surface diffusion, etc. Since processes occurring at solid-gas interfaces are 
often of prime importance to the chemical engineer interested in catalytic reactioils, 
adsorption, and surface mass transport, the method appears LO be especially 
suitable as an analytic tool to be used in conjunction with experimental ca:a!$c 
reaction rate studies. 

Discussion 

The work described in this paper is concerned wiih calculating transmission 
factors (often called Clausing factors) for steady flow in a tube, for transient flow 
in a tube with and without adsorption on the tube walls, and for steady flow in a 
converging-diverging channel. Calculation of transmission factors for szzady 
flow in a straight tube provides a test of our calculations with previous soluticcts 
obtained by both Monte Carlo simulation [X] and by numerical integration of the 
integral equations [5]. The analysis of transient flow in a rube has allowed us to 
confirm the assumption of Clausing [12], later verified by ;he theoretical anaiysis 
of Gordon and Ponomarev [13], that nonstationary, free-molecule flows in straight 
channels are described by the diffusion equation. Gordon and Ponomarev further 
showed that the diffusion equation also described the flow when the moiccuies 
were adsorbed for finite times upon collision with the walls of the chanrrel. The 
calculations presented in this paper indicate that the diffusion equation, in both 
the form postulated by Clausing and with the modified diffusion coefficient given 
by Gordon and Ponomarev for finite adsorption times, is only valid for L/V, :> 50, 
Further, we find that for values of L/r, < 10 and 7 w L/i? (where i; is the averag!: 
molecular speed and T the average adsorption time) the transient flow rate through 
a tube fed from a point source is peaked around times given approximareiy by 
r: 2~, 37, etc. Such phenomena would appear to be ideally suited to the expe~i- 
mental study of adsorption times provided a satisfactory method of XC-~retely 
measuring the flow rates can be devised. 

The analysis of steady flow in a converging-diverging channel provides us with 
some idea of the reduction in flow rate that can occur because of curvature in the 
direction of flow. Since the pores in cataiyst pellets are iikely to be of a convergicg- 
diverging nature ([14], [15], ([16], page 14)) these results give some indication ~<:he 
validity of the cylindrical pore model ([IT], [IS]* ([19], page 51)) for the analysis 
of Knudsen flow in porous media. 
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STEADY FLOW IN A STRAIGHT TUBE 

The system to be studied is illustrated in Fig. 1. We assume that the tube is 
connected to a low density reservoir at z = 0 containing molecules in an equili- 
brium state, i.e., the velocity distribution is Maxwellian. At z = L we assume the 
tube is connected to a perfect vacuum so that no molecules enter the tube at z = L. 

FIG. 1. The straight tube. 

The transmission factor q is defined as 

’ = 
number of molecules leaving the tube at z = L 

t number of molecules entering the tube at z = 0 1 (1) 

Knowledge of the transmission factor allows one to quickly calculate the flow rate 
provided we assume that the flow through the tube does not disturb the equilibrium 
nature of the molecules in the reservoir at z = 0. Under these circumstances the 
number of molecules entering the tube is given by 

7rnVro2 
r=7 (2) 

where 5 is the mean molecular speed, and n is the number density. 
Although the velocity distribution of the gas molecules has no influence on the 

transmission factor, it is important for studies of energy and momentum transfer 
as well as in the analysis of time dependent transmission. We assume that the 
equilibrium distribution at the entrance to the tube is given by 

Heref(v) is defined such thatf(v) dv is the fraction of molecules having a velocity 
in the range v to u -t dv. As we are interested in the flux of molecules passing through 
the entrance plane, we wish to randomly select molecules of velocity v from the 
distribution z+(v); i.e., we shall select a random number [ (distributed uniformly 
from 0 to 1) and associate it with a velocity v by the expression 

E = j+:ii*(LWt 
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Were U = c/U where r? is the average veiocity andJ”(<) is the dimension& Term 
of the distribution function given by Eq. (3). Given C’, there is no probierc i3 
finding 5; the relation is unique, and a table could be constructed so that one ~voL:.~% 
select a f aud find (perhaps interpolate to) the corresponding U. Shreider ([IX], 
page 151) gives an alternative procedure: generate $- then solve by iceration 

%+1 = ln(1 + ai) - InE, 81) - -1 i) 

and set 
u zzz (Q)V { f? i : 

where a is the converged solution of the iteration suggested by Eq. (5). 
The point of entry is distributed uniformly across the face of the tube provided 

the flow does not influence the distribution of velocities in the reservoir, i.e.. w 
assume the flow into the tube to be a negligible sink in the reservoir. For computa- 
tional speed, we use a rejection technique in which two random numbers f1 2nd tz 
are generated, and the entry coordinates are calculated as 

Lr’x’ + ;‘” > /-#)B, the values of t1 and e.2 are rejected, and a new pair is innodxed; 
Since about 78 “/i of the pairs are accepted, the routine is faster than computing x 
and y by the expression 

Y = i-0 cos(2ncf,) j’q ,_ , .\“a,~ 

E; = I’0 sin(27&). isb;J 

The angle of entry is given in terms of the three direction cosines + 8, y wit? 
respect to the x, J!, z axes where the first y, i.e.. yO , must be positive. If we Late: 
that si = sin #I cos 8, p = sin $ sin 6, and y = cos & we can generate three 
random numbers tl, tz ) E, and form I+ = 5, - v’i = 5”) IJ~ = 2[, - Z ii 
l!gg J- yQ‘l > 1, we must pick another pair of f2 and t3 . If ~1~~ + r,9‘2: < I. rhe!: 

The molecuie begins its flight from the position x0 ) j-0 , 0 in a direction speciiicd in 
terms of ‘Ye ~ & : yO . 
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After the first flight of length 1, it moves to 

For free-molecule flow, the flight either terminates at the wall (x2 + y” = ro2), 
or the molecule passes out the end of the tube (zl = y,l = L). We determine which 
occurs by setting z1 = L to find 1 by Eq. (10~) and then calculating x1 and y1 by 
Eqs. (lOa, b). If ~2 + ~‘1” > ro2, we know a wall-collision occurred, and we can 
set x1” f yl” = yo2 in order to solve for 1. The axial position z1 can then be deter- 
mined, and the molecule is thereby located on the wall of the tube. 

Although it was not done in this work, molecule-molecule collisions can be 
introduced at this point; however, their introduction does lead to the necessity of 
performing successive iterations to determine the transmission factor. If we ussunze 
a molecular density and a collision cross-section u, the mean free path for molecule- 
molecule interaction can be estimated from simple kinetic theory considerations as 

h = (m-l (11) 

It should be remembered that this result is applicable to a low-density gas at 
equilibrium conditions. On the basis of the assumed density tz and the calculated 
value of X we can generate a random number 5 and compute 

I’ = --A In t (12) 

It is known ([3], page 102) that I’ is distributed as the distance between coliisions. 
If I’ > 1, the flight path terminates in either a wall-collision or an exit from the tube, 
and the calculation of the flight is determined by Eqs. (10). If I’ < I, a molecular 
collision takes place at the location 

Xl = xg + a,/’ (1 W 

y1 = “0 -t poz Wb) 

z, = ‘yol’ (13c) 

A scattering angle is then computed, and the flight path calculation is repeated to 
determine whether the next event is an exit from the tube, a wall-collision, or a 
molecule-molecule collision. In calculations of this type we must keep account of 
the flight times so that information about the density distribution in the tube can be 
acquired and the original assumed density distribution corrected if necessary. This 
point was apparently overlooked in the initial attempt at this type of analysis by 
Ballance [9]. 
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The results presented in this paper deal only with the limiting condition of free- 
molecule flow, thus a given flight results in either a wall-collision or an exit from 
the tube. Upon striking the wall, the molecule is reflected. Even if there is no adsorp- 
tion, one can convincingly argue that for microscopicaIly rough surfaces the reEec- 
tion is diffuse rather than specular. Present ([21], page 57j suggests that the i_mpact 
point be considered a “‘window ” into a reservoir of gas such that as the original 
molecule disappears another appears having a flight direction selected in the same 
manner as we use to produce z,, . PO , yO . (Note that tve may simulate heat traxfe‘er 
by giving these “wall reservoirs” a different temperature than that of the entrance 
reservoir at 2 = 0.) This process is repeated until the molecule either passes cut :he 
exit of the tube at t = L or returns to the reservoir at is = 0, 

Our results for the transmission factor, plotted in Fig. 2, are in good agreement 
with the analytic forms for long tubes [6] and for direct transmission for very short 

J 
Long Tubs Farmuia, Pollard & Presen: 

\ 
Fi:si Order Correction 

0.1 
0.08 
O.Cb 

0.64 

L Direct Transmission 

i integral Equations fohi:ion, 
Reynolds and Richley 

I / ! I I I I I 
0.1 0.2 0.5 1.0 2.0 5.0 10.0 EO 50 100 

g=L:‘ro 

FIG. 2. Transmission factor versus dimension!ess tube length. 
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tubes [S]. The calculated points also fall very close to the integral solution [5] for 
tubes of intermediate length, and are essentially identical with the original values 
calculated by Davis [8] which covered the range 1 < 9 < 8 where (9 = L/r,). 

The error associated with the values of v shown in Fig. 2 can be estimated 
([22], page 21) by the expression 

=( q(l - 7) l/Z 
07y N ) (14) 

where N is the total number of molecules striking the entrance of the tube. If the 
transmission factor is 0.5, and we wish to determine this number to within 1 %, 
Eq. (14) indicates that we need to examine the history of IO* molecules. This 
situation occurs when B is on the order of 2. On the other hand, if L? is on the order 
of 20, and 77 is on the order of 0.1, we must examine the history of approximately 
IO5 molecules. Obviously the accurate determination of transmission factors for ~7 
greater than 100 becomes a time consuming computational problem, not only 
because of the large number of molecules that must be observed, but also because 
the average number of flights per molecule increases. 

The inverse dependence of the flux on the tube length for long tubes suggests that 
the molecular flux J, can be expressed in terms of the density gradient and a 
Knudsen diffusion coefficient 9~~. 

Here .I, is the flux of molecules in the z-direction (molecules per unit volume), and 
n is the molecular density (molecules per unit volume). For long tubes3 the Knudsen 
diffusion coefficient is given by 

gK = 2ik,/3 (16) 

This form for Knudsen flow has served as the basis for many studies [23, 24, 251 of 
mass transport in catalyst pellets in the Knudsen flow regimes. 

TRANSIENT TRANSMISSION 

Having verified our computational method, we turn to situations where the 
Monte Carlo technique offers unique advantages. One such case is an exploration 
of the situation examined by Gordon and Ponomarev [26] who were concerned 
with transient Knudsen flow in a tube. In essence they have noted the relaxation 

3 From Fig. 2 we see that a long tube is one where (9 = L/r,) > 100. 
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of the molecular random walk problem into the time dependent diffusion equation. 
The molecular density IZ must therefore satisfy 

where r is the mean adsorption lifetime. That this is true for a large number of 
collisions is well known (Chandrasekar [27] suggests that 10 collisions are satis- 
factory), but we have found for tubes of L N 20: where there is still a significant 
difference between the diffusion theory and the Monte Cario calculation, tha-; most 
particles make on the order of 100-1000 collisions. One may then pose the question 
of agreement of diffusion theory with computational experiments. 

Another interesting point to be explored is the approxi-mate extrapolation length 
of tube to be used in formulating the boundary value problem associated with the 
LWZ of the diffusion equation. The true governing equation is, of course, the Linear, 
integro-differential Boltzman Transport Equation. The diffusion equation may be 
derived from the BTE and is valid far from sources and sinks, among other condi- 
tions. To apply the diffusion equation near a boundary”, one procedure is to require 
the flux of molecules to be zero at an extrapolated distance beyond the boundary. 
For Knudsen flow through tubes, this correction is on the order of (rOiL) and is 
trivial for long tubes. Just what constitutes a long tube may be determmed by 
examination of Fig. 2 which indicates that the diffusion theory begins to break 
down for (L/r,) N 20. 

As a test of the diffusion theory we consider the following situation: A rube is 
sealed at one end (z = 0) and connected to a perfect vacuum at the other (z --_ e). 
At time c T= 0 the sealed end is exposed to a low density reservoir for a negligibip 
short time (i.e., the pulse time is small compared to the characteristic process rime), 
and then sealed off to prevent any flow out of the tube at z = 0. This type of process 
can be approximated in the laboratory by simply opening and closing a valve 
between the tube and a low density reservoir; this is exactly the process propose61 
by Gordon and Ponomarev [26] for the experimental study of adsorption lifetimes. 
This process was realized in our computer program by not allowing flights into 
the region z < 0. When such a flight occurred, the flight was terminated at z = 0. 
and values of cy, ,8, y for a diffuse wall collision were chosen subject to the restric- 
tion that y > 0. As each molecule travelled down the tube, its accumuia.ted time of 
flight was stored, and to allow for finite adsorption times on the walls: rhe time of 
f-light was incremented by a quantity T at each collision. 

4 Other than a solid boundary. 
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Gordon and Ponomarev [26] solved Eq. 17 subject to the following boundary 
conditions: 

B.C. 1 

B.C. 2 

B.C. 3 

B.C. 4 

I1 = 0, t = 0, Z>O (19 

I1 = 110 , t > 0, Z==O (20) 

12 = 0, t > 0, z=L (21) 
at1 -= 
ax 0, t > t, , z=o (22) 

One of the results of their solution was that as the duration of the pulse became 
small, i.e., 

the time, tmax , at which the maximum concentration occurs at the outlet is inde- 
pendent of tl and is given by 

t - L"/29K max - 

Defining a dimensionless time, Y, as 

(23) 

r = fL7/Y0 

we may express the result given by Eq. (23) as 

(24) 

F mas = (8) 3v + T) (25) 

where Y is the dimensionless adsorption time. In Fig. 3 we show the comparison 
between Eq. (25) and our calculated results for dimensionless adsorption times of 
zero and ten. The latter case would be roughly equivalent to a nitrogen molecule 
residing (on the average) on the wall for IO-” seconds if we were considering flow 
in a 0.10 cm diameter tube at room temperature. For T = 0 the Monte Carlo 
calculations are in good agreement with the diffusion equation for .Y > 20. This is 
similar to the agreement found for transmission factors shown in Fig. 2. However, 
for finite adsorption times one must go to progressively longer lengths before 
agreement is obtained. Although it is not clearly shown in Fig. 3, the agreement 
with the diffusion equation is excellent for values of L? greater than or equal to 50. 
The times shown in Fig. 3 are obtained by collecting the output times for groups 

of molecules and plotting the histogram of fraction of molecules versus time. Two 
such plots are shown in Figs. 4 and 5. 

The delay time owing to finite adsorption times is proportional to the square of 
the length, 

delay time = (#) PT (26) 
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__ Diffusion Equation 
-- Monte Carlo Calculations 

I 
q T=O 

e T-lo 

10 

LO-1 
10-1 1 10 102 133 to” 

FE. 2. Time at which maximum concentration occurs as a ~?.~~ci~on or^ distance. 

thus it would appear that long tubes are preferred from the experimentaiist’s ?o;i~: 
of view since measurement of the peak time is difficult. while the measuremect of rhe 
length of the tube is trivial. However, the range of times during which the fu~!ion 
.f (and therefore the concentration) will be within 10 “‘, (for instance) is also 
proportional to -Lp”, thus the error in determining the delay time will be proportional 
to LP, and the long tube, in reality, has no experimental advantage over the shori 
tube, except that one is able to minimize end effects by use of a long tube. IE fact, 
it is not at all clear how one could perform an experiment which satisfied the resrtic- 
tions of the analysis for a tube having a length equal to the diameter, i.e., 9 = 2.0. 

En considering this problem we were led to consider the use of a “pinhoie’* 2.; 
z = 0 as a means of introducing a pulse in a short tube without introducing undecir- 
able end effects. The mechanics of such an experiment would seem co be feasible, 
and the Monte Carlo code is easily altered to analyze such a process. One need oniy 
restrict the entrance of molecules into the tube to the location .x = ,I’ = 0. For 
comparison with experiments the entry region in the calculation could be increased 
PO exactly reproduce the experimental conditions. The results of this type of C~TP 
putation are shown in Fig. 6. Here we see three peaks in,f occurring near T = I i 
Y = 2. and Y = 5. This phenomenon can readily be explained as forollows: A 
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FIG. 4. Emergence times for 9 = 0.25 and T = 0.0. 

certain fraction of the molecules pass through the tube without colliding with the 
walls; these molecules give rise to a peak infaround F = 1. The peak is “smeared” 
owing to the Maxwellian velocity distribution and the distribution of flight paths 
which range from L to (L” + (r,,)*)ljs. The second peak results from those molecules 
which have suffered one wall collision, and thus have a total flight time of approx- 
imately 2; half of this time being spent adsorbed on the wall. The third peak results 
from those molecules which suffer two wall collisions. The peak occurs at a time 
greater than 3.0 because the length of the flight path is increased considerably over 
the minimum distance, L. 

The spacing between the peaks is always larger than T, approaching it as a 
limit as the ratio of mean transit time to T approaches zero. As we tend to that 
limit, however, the second and all subsequent peaks become less prominent. 
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FIG. 5. Emergence times for 9 : 100.0 and T = 0.0 

(Analytical expressions for the collision probabilities a!so can be deril:ed. By this ~;e 
mean that we can compute the fraction of particles that sufk no: one, two...., 

collisions. We can then find the relative heights of the peaks. Unfortunate!y: to do 
this, one must make the assumption that the mean free path for wall collisions is 
independent of position-an assumption suitable only for iong tubes where the 
ratio of mean transit time to T is large.) 

One of the suggestions made by Gordon and Ponomarev [26] was that the disrri- 
bunion of adsorption lifetimes could be determined by the spread of the concentra- 
tion peak. In order to explore this possibility the vaiue of T was chosen in three 
ways: (I) r had but a single value: (2) T was drawn from a normal distribution 
with standard deviation equal to 10 Sd of the mean; and (3) : was drawn from a 
quasi-normal distribution with a standard deviation of SO*,, of the mean. In the 
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FIG. 6. Emergence times for Y = 1.0 and T = 1.0. 

latter case, when T was less than zero, it was replaced with T = 0, thus giving the 
quasi-normal distribution. In an effort to enhance the effect of the distribution of 
adsorption times, the input was taken to be a mono-energetic source. This eliminates 
the smearing of the peaks due to the distribution of velocities. From Figs. 7, 8, and 
9 there is no significant difference between the three outputs. We conclude that the 
distribution of adsorption residence times cannot be detected by experiments of 
this type; however, the mean adsorption time should be relatively easy to measure 
experimentally. 

STEADY FLOW IN A CONVERGING-DIVERGING CHANNEL 

The importance of diffusion in porous catalyst pellets has been discussed by a 
number of authors [14-191, and a number of attempts have been made to develop 
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FIG. 7. Emergence times for 2 = I.0 and ?’ = 1.0. 

ncceptable models of this complex flow phenomenon. In one way or another ail 
these models are based on the elementary process of flow in a straight channel. The 
exception to this statement is the work of Evans, Watson, and Mason [28] in which 
the porous media and gas are represented as a ‘“dusty gas”. Although this approach 
explains certain characteristics of flow in porous media, a rortuosity coefficient 08: 
an elective diffusivity must be inserted into the theory in order to obtain agreement 
with experiment. 

There are two quite obvious statements that one can make about porous media: 

(1) The pores or channels are not likely to be right circular cylinders, but are very 
likely to be converging-diverging channels; and (2) the use of flow equations for 
right circular cylinders is a very attractive course of action, and it is expected that 
any workable model of flow in porous media will probably include this simplifica- 



MONTE CARLO ANALYSIS OF KNUDSEN FLOW 

FIG. 9. Emergence times for 2 = 1.0 and ?’ = 1.8. 

Wowever, in order to compare the results with those for straighr chamleis it seems 
best to use ?, the average radius, as a parameter. Forming the dimensk&ess 
distances 

R(Z) = r(z))/2; 

.2ET = RC/F 

z = z/r; 

2 = L/i; 
gives 
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FIG. 10. Converging-diverging channel. 

The ratio r,ii’ is determined by noting that 

$[R(Z)dZ = 1 (29) 

allowing us to express ro/i; as 

From Fig. 10 we see that the length of the channel is restricted by the condition 

L<2RC or B<2WB 

A second restriction is that (roll;> 3 0. Using Eq. (30) we obtain values of 9 in 
terms of @Z if the channel is to remain open. This restriction is shown graphically 
in Fig. 11. For values of 959 less than 4.66 the upper bound on L? is 2W%?, while 
values of S?W greater than 4.66 give rise to an upper bound determined by Eq. (30). 

The determination of the transmission coefficient for this geometry is similar to 
that described for the straight channel. In this case the flight path is determined by 
marching along the line of flight until either the wall or an exit is reached. Emission 
from the wall is assumed to be diffuse relative to a plane tangent to the channel 
wall. 

The results of the calculations are shown in Fig. 12 for 9%? = 1, 2, 5, 10, and 
infinity. It is clear that the transmission factor for a converging-diverging channel 
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FIG. 11. Length versus radius of curvature for a closed pore. 

can be greatly reduced over that for a straight channel, especially in the region near 
the upper bound on A? illustrated in Fig. I I. To illustrate the importance of this 
effect, let us consider a porous media made up of impermeable spheres of radius 
r*, thus 

RG = O(r*) 

L = O(2fy 

If the packing of the spheres is face-center cubic, the porosity and the ~‘~~e~~r 
mean pore radius [29] are, 

E = 0.26, F = 0.234 r* 
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FIG. 12. Effect of curvature on the transmission factor. 

and for body-centered cubic packing the quantities are 

E = 0.32, I: = 0.313 r* 

Using these quantities we can estimate that the dimensionless length and radius of 
curvature are of the order of magnitude 

.f2Fz = O(3) 

5? = O(6) 

From Fig. 12 we can see that these estimates would lead us to conclude that a 
reduction in the flow rate of anywhere from a factor of two to a factor of ten could 
result from the converging-diverging nature of the channel. 
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CONCLUSIONS 

The Monte Carlo calculations presented in this paper have established the range 
of validity of the diffusion equation in predicting Knudsen flow rates for both 
steady and transient flow in straight channels with and without adsorption on the 
walls of the channel. In addition the results for both types of flow in short tubes are 
given, Results for converging-diverging channels indicate a significant reductim 
in the flow over that for comparable straight channels. 
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